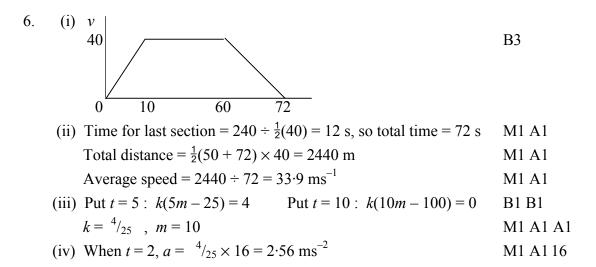

MECHANICS (C) UNIT 1 **TEST PAPER 2**

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

(ii) the value of M,

PMT


(iii) the time taken for Q to hit the floor. [3] Given that Q does not rebound from the floor,
(iv) calculate the distance of P from the pulley when it comes to rest. [5]
6. A car starts from rest at time t = 0 and moves along a straight road with constant acceleration 4 ms⁻² for 10 seconds. It then travels at a constant speed for 50 seconds before decelerating to rest over a further distance of 240 m.
(i) Sketch a graph of velocity against time for the total period of the car's motion. [3]
(ii) Find the car's average speed for the whole journey. [6] In reality the car's acceleration a ms⁻² in the first 5 seconds and then decreases to 0 again. A refined model, designed to take account of this, uses the formula a = k(mt − t²) for 0 < t < 10.

- (iii) Calculate the values of the constants *k* and *m*. [5]
- (iv) Find the acceleration of the car when t = 2 according to this model. [2]

MECHANICS 1 (C) TEST PAPER 2 : ANSWERS AND MARK SCHEME

1.	(i) Cos. rule on force -: $R^2 = 16 + 36 - 48 \cos 140^0$ $R = 9.42$ N (ii) $\sin \theta / 6 = \sin 140 / R$ $\sin \theta = 0.409$ $\theta = 24.2^0$	
2.	(i) When $x = 0$, $t(3t + 8) = 0$ No solution for $t > 0$ (ii) $v = 6t + 8$ When $v = 20$, $6t = 12$ $t = 2$ M1 A	B1 A1 A1
	(iii) $a = 6$, constant $F = 0.4 \times 6 = 2.4$ N	B1 M1 A1 7
3.	Model stone as particle, ignore air resistance	B1
	(i) $7 = gt^2$ $t^2 = 14 \div 9.8$ $t = 1.20$ s	M1 A1
	(ii) $v = gt = 11.7 \text{ ms}^{-1}$	M1 A1
	(iii) $0 - 5.85662 = -2gh$ $h = 1.75 \text{ m}$	M1 A1 A1 8
4.	(i) $10\ 000u_A + 7\ 000 \times -2 = 17\ 000 \times 10$	M1
	$10\ 000u_A = 184\ 000$ $u_A = 18.4\ \mathrm{ms}-1$	A1 A1
	(ii) Resisting force = $\mu R = 0.15 \times 17\ 000g = 24\ 990\ N$	M1 A1 A1
	(iii) $v = u + at$: $0 = 10 - 0.15gt$ $t = 6.80 s$	M1 M1 A1 A1 10
5.	(i) $T - 0.2g = 0.4(1)$ $T = 0.4 + 0.2g = 2.36$ N	M1 A1 A1
	(ii) $Mg - T = 0.4M$ $9.4M = 2.36$ $M = 0.251$	M1 A1 A1
	(iii) $0.5 = \frac{1}{2} \times 0.4t^2$ $t = 1.58 \text{ s}$	M1 A1 A1
	(iv) <i>P</i> has moved 0.5 m and has speed 0.632 ms ⁻¹ and acceleration	B1
	$-0.2g$, so $0^2 - 0.632^2 = 2(-0.2g)s$ $s = 0.102$	M1 A1
	Comes to rest $0.75 - (0.5 + 0.102) = 0.148$ m from pulley	M1 A1 14

PMT

PMT